Home Companies Industry Politics Money Opinion LoungeMultimedia Science Education Sports TechnologyConsumerSpecialsMint on Sunday

Great leap

Great leap
Comment E-mail Print Share
First Published: Thu, Jul 15 2010. 10 46 PM IST

Updated: Thu, Jul 15 2010. 10 46 PM IST
New Delhi: Turn your cellphone over and open the back.
Beneath the narrow slot where the SIM card sits, there’s a bright green plate. On the other side of that plate lies the most important part of your cellphone: the semiconductor, a cellphone’s version of a brain. Every time you use your phone—to make a call, stream music, or surf the Net—a billion tiny switches inside this brain flicker on and off. The patterns they create while flickering are interpreted and transmitted to the phone’s parts, coordinating all the phone’s actions. But unlike a human brain, a cellphone’s brain is a tiny flake of white plastic, the size of a fingernail or smaller.
Unlike the human brain, the most powerful modern semiconductors are a hundred times smaller than the semiconductors of a generation ago. They are more powerful than the semiconductor that landed the first man on the moon, half a century ago.
And, most importantly, unlike the human brain, the semiconductor was designed and manufactured by humans, and every electronic device on earth contains at least one.
Smaller, faster
“The simpler an electronics device seems to be, the more complicated the engineering process that created it,” says Jaswinder Ahuja, 46. Ahuja is managing director of Cadence Design Systems India Pvt. Ltd, the Indian branch of Cadence Design Systems.
Cadence is the world’s leading electronics design automation (EDA) company. EDA is a niche industry.
EDA companies design the software that allows the creators of electronic devices to make specialized chips. Because of their software, the chips of today are faster and smaller and use less power than the chips of the past. They are also cheaper.
In fact, over the past 50 years, chips have become so cheap that individual customers have discovered them. Companies churn out smartphones, digital cameras and portable music devices—made for individuals, rather than corporations.
“Nowadays, more than half of the business is people who make consumer electronics,” says Ahuja. Ten years ago, he says, it was all heavy industries like aerospace.
The Kindle story
Chipping in: Cadence Design Systems India MD Jaswinder Ahuja. Mohd Zakir/Hindustan Times
In October 2009, the online mega-retailer Amazon.com announced that it planned to launch a new edition of its best-selling Kindle, the tablet reader for electronic books. The new and improved Kindle could store hundreds of files and run for two weeks on a single charge. The Kindle’s marathon battery life came about because of a new and improved chip, designed in India by Freescale Semiconductor India Pvt. Ltd, using Cadence software.
“Once you download a book, the Kindle has to ensure that your copy is legal,” says Ganesh Guruswamy, 44, vice-president and country manager for Freescale Semiconductors India.
The engineers used a new process known as “system on chip” to bring all these requirements together. They integrated the Kindle 2’s complex devices onto the chip itself, cutting the amount of power these devices consume.
Chips of the future
Today’s consumers want tiny chips that can do a lot of things at once, and still fit in a wallet or purse. A lot of the technical development falls to engineers in the companies that make electronic devices, but a significant amount of it is also done at Cadence.
Cadence’s software plots out the microscopic terrain of a semiconductor, much like architectural software plots out a house, with all its wiring and support beams. The engineers can then use the computer model to test how the proposed semiconductor will hold up in the real world.
Over the last 20 years, the semiconductor industry has grown from a few small design centres to a highly competitive market, with estimated revenues of $7.59 billion (Rs35,445.3 crore) in 2010.
For Cadence, the two-decade-old Indian research and development (R&D) team is a critical part of their success.
In 1989, Cadence merged with Gateway Design Automation Corp., a former competitor. As part of the deal, Cadence acquired Gateway’s facility in Noida, Uttar Pradesh. It also acquired 14 engineers, most of them recent college graduates born in India but educated in the US. These engineers were Gateway’s fledgling R&D division.
“When they acquired the engineers, that was a happy accident,” says Ahuja. “But once they got us, they had to figure out what to do with us.”
This was decades before the business process outsourcing boom. At the time, Cadence was happy to practice labour arbitrage—to pay their Indian engineers a fraction of an US salary, for the same work. The Indian engineering team grew from 14 to 70. But the engineers in the R&D branch were dissatisfied being the organization’s cheap brains.
“It takes years to build up domain expertise in this field,” says Ahuja. “At the time, we wanted to deliver quality, productivity and predictability.”
In those early years, the Cadence India team worked on only one part of the company’s software.
Over time, corporate managers in the company’s San Jose, California, headquarters handed them more and more responsibility. Now, says Ahuja, there are many parts of the company’s software that are handled exclusively by the offices in Noida.
Cadence India’s R&D division employs around 650 engineers, and has a budget in excess of $20 million. Almost 90% of Cadence’s clients use software that was developed in some part by Cadence’s Indian design team.
“Almost all electronic devices in the market today have been touched in some way by our software,” says Ahuja.
The chips of the future have already exceeded the chips of the past.
Already, carbon-conscious clients are working on chips that can process a million tasks while using almost zero energy. Others, aware of the inequality in global health care, are creating chips for portable medical devices that can perform at high temperatures on an erratic power supply.
But Ahuja, an engineer who still remembers trying to prove his worth to the Cadence global bosses 20 years ago, knows that all this is probable, and more.
“The chips of the future are going to be a hundred times more powerful than the chips of today,” he says. “They will have to be.”
Cadence Design Systems
Started operations (in India):1989
Made in India: Cadence Incisive Enterprise Verifier, Cadence Incisive Formal Verifier and Cadence Allegro System—software that engineers use to design semiconductors
Aman Sethi contributed to this story.
Every Friday, this series chronicles technological innovation and India’s rise as a global R&D hub.
Comment E-mail Print Share
First Published: Thu, Jul 15 2010. 10 46 PM IST