Liver tissue for transplants, drug screening developed

The researchers say their approach could lead to the development of functional liver tissue for clinical applications and screening drugs for side effects


In the lab, the engineered tissue had a metabolic rate that was closer to real-life levels than other liver models, and it successfully simulated how a real liver would react to various drug combinations. Photo: HT
In the lab, the engineered tissue had a metabolic rate that was closer to real-life levels than other liver models, and it successfully simulated how a real liver would react to various drug combinations. Photo: HT

Beijing: Scientists have successfully developed a liver tissue which closely mimics the complicated structure of the organ and could have a range of uses from transplants in patients suffering from liver failure to drug testing.

Researchers from Northwest A and F University in China built a microfluidics-based tissue that copies the liver’s complex lobules, the organ’s tiny structures that resemble wheels with spokes. They did this with human cells from a liver and an aorta, the body’s main artery.

In the lab, the engineered tissue had a metabolic rate that was closer to real-life levels than other liver models, and it successfully simulated how a real liver would react to various drug combinations. The liver serves a critical role in digesting food and detoxifying the body. But due to a variety of factors, including viral infections, alcoholism and drug reactions, the organ can develop chronic or acute problems. When it does not work well, a person can suffer abdominal pain, swelling, nausea and other symptoms.

Complete liver failure can be life-threatening and can require a transplant, a procedure that currently depends on human donors. To curtail this reliance and provide an improved model for predicting drugs’ side effects, scientists have been engineering liver tissue in the lab. But so far, they have not achieved the complex architecture of the real thing.

Jinyi Wang and colleagues came up with the new approach to create a tissue that functions more effectively than existing models.

The researchers conclude their approach could lead to the development of functional liver tissue for clinical applications and screening drugs for side effects and potentially harmful interactions.

The study was published in the journal Analytical Chemistry.