Quantum computing will make online heists likelier than we can fathom
Summary
- Advances in the technology will aid safety-code decryption. Central bank digital currencies may need to use quantum-safe encryption techniques.
As your credit card is scanned one final time this holiday season, say thanks to prime numbers for keeping the checkout queues short and your money safe. Well, most of the time anyway. Much of the cryptography that goes into beating credit-card fraud comes down to 3,5,7, etc, or integers that can only be divided into themselves and 1. Banks randomly generate two huge primes—say, 150 digits long—and multiply them to encrypt payment authorization from the microchip of your card to the point-of-sale terminal.
Even supercomputers can’t easily decipher the original numbers because the time required to run any of the known algorithms increases exponentially with their length. A 250-digit number that was part of a 1991 factorization challenge was finally broken down into a product of two primes in 2020. On a single advanced computer running non-stop, the calculations would take 2,700 years.
Rivest-Shamir-Adleman (RSA) private keys generated with the help of large numbers let bank affix a unique, tamper-proof digital signature via microchips embedded in cards. With these replacing magnetic strips, the menace of counterfeiting has gone down. Payment scams are now more likely in e-commerce deals. However, a new challenge is emerging that could begin to erode the protection offered by prime numbers, perhaps by decade-end.
The first hint of trouble came at the start of the millennium. A team of scientists at IBM exploited the mysterious interplay of subatomic matter and energy to run calculations that would be impossible on a classical computer. Their primitive quantum computer figured out that 15 was a product of 3 and 5. A subsequent experiment in 2012 split 21 into 3 and 7. While every middle-schooler knows how to break down small integers like 15 and 21, these were the first demonstrations of ‘Shor’s algorithm,’ a method of quantum factorization that does not get exponentially more time-consuming as the number gets bigger. In August, Oded Regev of New York University proposed what many consider the first big improvement to Peter Shor’s 1994 technique. If it works, the time taken to decode complex ciphers may shorten. By 2030, a $1 billion quantum computer may be able to break RSA Laboratories’ widely used 2048-bit encryption by factoring a 617-digit number in a few hours, according to a 2016 estimate by the National Institute of Standards and Technology in Maryland. NIST has come up with new protocols that will be resistant to quantum computers, but what if the threat arrives before the weaponry to ward it off has been adopted?
Retail losses may be kept to manageable levels, at least for a while. But a wholesale quantum heist would be catastrophic. The security of worldwide interbank payments may be compromised if the digital signatures authorizing release of funds lose their sanctity. Scammers already have a blueprint in the $81 million theft from Bangladesh’s accounts with the Federal Reserve Bank of New York in 2016.
It isn’t just the security of existing products that’s at stake; innovative new payment instruments will be affected, too. Monetary authorities are experimenting with paperless cash. The Bank for International Settlements estimates that by 2030, there may be 15 central bank digital currencies (CBDCs) in retail circulation.
Tourbillon, a recent BIS project, has shown that the cash-like privacy that users will expect of these instruments may be realizable. The so-called blind signature protocol, invented by privacy pioneer David Chaum in 1982, may be enough to ensure that payers don’t reveal their identities to anyone. Even the central bank will only check that the eCash that comes to it for verification has its signature and not been spent before. Payments made using such highly private CBDCs may also be fast and able to handle peak demand. However, this is only true as long as the RSA encryption technology is strong enough to keep malicious actors at bay. Introduce quantum-safe cryptography into the equation, and the cost to users increases: A one-second payment cycle stretches to five; transactions per second drop by a factor of 200. More experimentation is needed. If it turns out that a central bank’s virtual signature on CBDC tokens is not impervious to quantum counterfeiting—or can only be foolproofed by slowing payments down—then ordinary people are going to reject them.
As the ChatGPT-induced revolution in generative AI has shown, meaningful breakthroughs can elude a field for decades. But once they do occur, they can multiply at an overwhelming speed. Quantum computing may be no different. Prime numbers have served the internet age well, but the private sector and public authorities cannot take their continued guardianship for granted. ©bloomberg